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Computational grids present promising computational and storage capacities. They can be made by
punctual aggregation of smaller resources (i.e., clusters) to obtain a large-scale supercomputer. Running
general applications is challenging for several reasons. The first one is inter-process communication:
processes running on different clusters must be able to communicate with one another in spite of security
equipments such as firewalls and NATs. Another problem raised by grids for communication-intensive
parallel application is caused by the heterogeneity of the available networks that interconnect processes
with one another. In this paper we present how QCG-OMPI can execute efficient parallel applications on
computational grids. We first present an MPI programming, communication and execution middleware
called QCG-OMPI. We then present how applications can make use of the capabilities of QCG-OMPI by
presenting two typical, parallel applications: a geophysics application combining collective operations
and a master-worker scheme, and a linear algebra application.
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1. Introduction

Computational grids present promising computational and
storage capacities. They can be made by punctual aggregation of
smaller resources (i.e., clusters) to obtain a large-scale supercom-
puter (i.e., the resulting grid). Many large-scale scientific problems
have been successfully solved, thanks to the use of computational
grids in biology (protein folding [1]), medicine (cure muscular
dystrophy [2]), financial modeling, earthquake simulation, and
climate/weather modeling [3]. Such applications are very specific
and are particularly well adapted to computing on a large-scale,
loosely-coupled platform and have been implemented without
any direct connection between computing processes. On the other
hand, practical experience has shown that applications involving
point-to-point communication between processes perform poorly
on grids [4].

Running general applications is challenging for several reasons.
The first one is inter-process communication: processes running
on different clusters must be able to communicate with one
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another. On the other hand, clusters must be protected from
external intrusions by security equipments such as firewalls and
NATs, which additionally are used to reduce the number of public
IP addresses needed by clusters. To address this problem without
requiring any trade off between security and connectivity, we
designed QCG-OMPI' [5,6], an extended MPI library based on
a framework providing several basic and advanced connectivity
techniques aiming at firewall and NAT bypassing.

The QosCosGrid? [7] project aims at developing and executing
parallel applications on institutional grids. A full job management
and execution stack has been designed in order to support
applications on grids. QosCosGrid uses QCG-OMPI as its MPI
implementation.

Another problem raised by grids for communication-intensive
parallel application is caused by the heterogeneity of the available
networks that interconnect processes with one another. Local com-
munication media have a lower latency and a higher bandwidth

1 QosCosGrid-OpenMPI, QosCosGrid standing for Quasi-Opportunistic Super-

computing in Grid environments.

2 Quasi-Opportunistic Supercomputing for Complex Systems in Grid Environ-
ments, http://www.qoscosgrid.eu.
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than long-distance networks by two to four orders of magnitude.
Hence, applications must follow adapted communication schemes
in order to avoid lower performance, higher cost communications
(i.e.,inter-cluster communications) and, as a consequence, adapted
computation schemes.

The approach commonly followed so far has consisted in
discovering the available physical topology at run-time and
adapt the application dynamically. Nonetheless, experience has
shown that writing applications that can adapt themselves to any
topology is a difficult problem and often refrains programmers
from using such platforms. The approach used here inverts the
process of matching the application’s topology to the physical
topology and pushes the complexity of this process to the grid
meta-scheduler [8].

Contributions of this paper

In this paper we present how QCG-OMPI can execute efficient
parallel applications on computational grids. Pieces of this work
have been published as proceedings of several conferences [9,8,
10,6]. Their respective focus ranged from the core concepts of
QCG-OMPI [6] and its design [8] to its usage for practical applica-
tions [10,9]. In the present paper, we synthesize those results into
a standalone study. We also draw conclusions on this project and
propose this approach for the future cloud platforms.

The paper is organized as follows. We first present previous
works on MPI on the grid, adapted middleware and applications
on the grid (Section 2). Section 3 presents the architecture of
QCG-OMPI: its connectivity features (Section 3.1) and the method
we propose here to program high performance applications for
the grid (Section 3.4). Section 4 presents the communication
performance obtained by QCG-OMPI for both point-to-point and
collective communications, and Section 5 presents two typical
applications adapted for the grid using QCG-OMPL.

2. Background

MPI [11] is the de facto standard for programming parallel
applications. As a consequence, it is a natural choice for program-
ming parallel applications for the grid to re-use existing paral-
lel routines and expertise in programming scientific applications
using MPI. Open MPI [12] and MPICH [13] can be cited as two of
the main open-source implementations of the MPI standard.

Running MPI applications on computational grids raises two
major issues. The first obstacle is a technical issue concerning
communications throughout the grid. The second difficulty is the
need for a programming technique to be used to obtain good
performance on such platforms.

2.1. MPI middleware and the grid

The two major implementations have been designed for
clusters, without considering the particularities of grids. Several
MPI implementations have been designed or adapted to deal
specifically with some of these particularities. PACX-MPI [14,15]
uses relay daemons to forward inter-cluster communications and
a local MPI implementation available on each cluster for intra-
cluster communications; this approach allows to handle data
representation heterogeneity by converting the payload of inter-
cluster messages into a common data format, called eXternal
Data Representation (XDR). It also limits the number of ports
that have to be open in the firewall, and can handle Network
Address Translation (NAT) if the relay daemon is located on the
NAT server. However, relay daemons induce an extra hop in inter-
cluster communications, and can quickly become a bottleneck.

MPICH-G2 [16,17] is based on the MPICH [13] library and uses
the Globus Toolkit (GT) [18] to schedule, deploy and coordinate

a job across the grid. It does not include any firewall nor NAT
bypassing mechanism, although it can be set up to use a specific
range of ports that correspond to ports that are left open by
the firewall. Another drawback of MPICH-G2 is its complex
architecture and its extensive use of external services (from the
Globus Toolkit) during the start-up phase, which is, consequently,
responsible for significant overhead in the job’s life cycle. MGF [19]
is based on MPICH-G2 and implements relay proxies and a
delegation mechanism that are similar to PACX-MPI's techniques
for transparent inter-cluster communications between clusters
using private addressing and efficient collective operations.

GridMPI® uses the Interoperable MPI (IMPI) [20] standard
to interconnect multiple instances of MPIL It is based on the
YAMPII* MPI library. It can also use relay daemons to pass
through firewalls with only one open port, but requires global IP
addressing. Moreover, it cannot handle non-trivial heterogeneity
of data representation, like different floating point and 32/64
bits support, whereas Open MPI allows heterogeneous 32/64 bits
representation, and can handle more complex shifting between
different architectures.

2.2. Collective operations on the grid

Collective operations have been studied widely and extensively
over the last decades. According to a study conducted on an
intensively-used Cray T3E 900-512 supercomputer [21], almost
every MPI program use collective operations whereas only 18.9%
of the CPU time is spent on programs that use point-to-point
communications. Besides, this study shows that 58.9% of the time
spent in MPI routines is spent doing collective operations.

Collective communications are most often based of tree-like
topologies, like Fibonacci [22] or binary trees. Optimizations
like halving and doubling increase the available bandwidth [23].
However, these algorithms were proved optimal in homogeneous
environments, and suffer a high overhead in systems where not
all the networks links have the same performance. If one message
transmission takes longer than the other ones, it may cause a slow
down in the whole system, as a side-effect of the algorithm.

A theoretical study of a broadcast algorithm for hierarchical
architectures as been done by Cappello et al. in [24]. They propose
a top-to-bottom hierarchical approach to broadcast a message
within groups placed at the same level of hierarchy. One effect
of this approach is that the number of upper-level, expensive
messages is reduced to a minimum value of O(1). We propose here
to generalize this approach for any collective operation.

2.3. Programming MPI applications for the grid

Programming applications for the grid requires some adapta-
tion to the underlying topology of the computing resources. Prac-
tical experiments using the Amazon EC2 Cloud [4] and as part of the
GrADS’ project [25] showed that parallel applications designed for
clusters and executed directly (without any adaptation) on grids
suffer from the usage of remote resources and are dramatically
slowed down when using a system which is not a single cluster.
MPICH-G2 introduced the concept of colors to describe the avail-
able topology with four levels of hierarchy called: WAN, LAN, sys-
tem area and, if available, vendor MPI. However, one can expect
finer-grain topology information and more flexibility for large-
scale grid systems. These approaches expose the physical topol-
ogy to the application, which has to dynamically adapt itself to the

3 GridMPI official webpage: http://www.gridmpi.org.
4 YAMPII official web page: http://www.il.is.s.u-tokyo.ac.jp/yampii.

5 Software Support for High-Level Grid Application Development http://www.
hipersoft.rice.edu/grads/.
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Fig. 1. Architecture of the grid infrastructure of QCG-OMPI.

available topology. A self-adaptive master-worker algorithm [26]
is an attempt to adapt the application at run-time.

Practical experiments have shown that it is easier to write an
application with an a priori knowledge of the topology it will
be executed on. For example, [27] is based on the MPI routine
MPI_Scatterv to scatter chunks of data of different size among
computing resources. Following the same static approach, [28]
presents a sorting algorithm that balances the amount of work
to do regarding what each resource can handle and what their
computing speed is.

3. Architecture

In this section we present the architecture of QCG-OMPI, an
adaptation of Open MPI [12] specifically designed for computa-
tional grids following the “cluster of clusters” design. In 3.1 we
present how QCG-OMPI deals with communications throughout
the grid, in spite of security equipments supposed to limit con-
nectivity. Connectivity techniques are presented in Section 3.2.
Section 3.3 presents how collective operations can be adapted to
the topology using this approach. In 3.4 we present a method for
programming efficient parallel applications on grids with respect
to the specific requirements such as topology.

Key ideas of QCG-OMPI. QCG-OMPI features connectivity tech-
niques that permit direct point-to-point communications between
processes across the grid, without requiring any specific config-
uration of the security and routing equipments. It provides a set
of grid-optimized, hierarchical collective communications to allow
applications to communicate efficiently and following adapted
patterns. QCG-OMPI also provides an extension of the MPI standard
and collaborates with a grid-enabled scheduler to allow the devel-
opment and execution of grid-enabled, hierarchical applications that
avoid high latency communications by using appropriate commu-
nication and computation patterns.

3.1. Communication middleware

One of the first problems that appear while trying to run an
MPI application over a computational grid is the connectivity
of the different nodes not belonging to the same administrative
domain. The presence of security equipments like firewalls and
Network Addresses Translators (NAT) - supposed to protect the
domain from external attacks - limits the connectivity of parallel
applications.

In order to solve this connectivity limitation QCG-OMPI
features an extent-ion of Open MPI's run-time environment and
library with a set of grid services providing the communication
library with advanced connectivity capabilities. These services
abstract the connectivity service and provide the transparent
communication establishment for the MPI applications throughout
a computational grid. Fig. 1 presents a global picture of the
architecture, across two administrative domains.

Domains must be reachable from one another, at least
through gateway nodes, on which we run what we call a frontal
service (or component). In addition to services running on each
administrative domain, we use two services that can be hosted by
any administrative domain, namely the broker and one or multiple
proxies. The broker service must be reachable from any frontal
component and the proxy service must be reachable from any
node. On every node of each administrative domain, we also use
a connection-helper service that is connected to the frontal service.

These services have been implemented using the SOAP
remote procedure call protocol in order to be portable and
interoperable across hardware and software architectures. We
used the lightweight grid service engine gSOAP [29]. The following
section describes their main characteristics. They have been
described more thoroughly in [6].

3.1.1. The broker

The broker service is a centralized service running on only
one machine in the grid and accepting incoming connections
from frontal components. The brokering service provides a way to
communicate between nodes located in the same administrative
domain and between nodes that would not be able to establish
connections with one another otherwise, because a NAT and/or
a firewall are standing between them. To do so, the broker
receives the local cluster configuration from the frontal service.
This configuration includes the connectivity restrictions (cluster is
open on a port range, firewall bypassing techniques, or completely
closed). In addition of collecting all the local configurations, the
brokering service centralizes all processes contact information.
This process contact information corresponds to the Open MPI
process unique identifier called process name and the process
access point (the public IP address of the node where the process
is executed and the port number on which the process listens for
incoming connections). The broker’s global contact list is filled by
every Open MPI process and takes place every time an Open MPI
process creates an access point.
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Each time the Open MPI process wants to establish a commu-
nication with another Open MPI process, it invokes the brokering
service through connection-helper and frontal services. Cross
checking all local configurations, the broker finds which technique
is most relevant to establish the requested connection.

3.1.2. The frontal

The frontal service is running on a front-end machine of each
cluster. It is connected to the brokering service and it accepts
connections from connection-helper components. The broker sends
answers to the frontal, that saves it in its local memory. When
another process from this cluster asks for this information again,
the frontal can answer directly without asking the broker. This
hierarchical communication pattern provides scalability to the
architecture, with a small cost on latency to connect to the broker.

3.1.3. The connection-helper

The connection-helper service runs on every node. The goal of
this component is to help any Open MPI process to establish the
connection with another process by relaying messages between
Open MPI process and the frontal service before the connection is
established.

3.1.4. The proxy

We assume that every QCG-OMPI process and every cluster
node can access this service directly. The proxy service is a service
running on one or many machines in the grid and accepting
incoming requests from the broker service. The goal of this service
is to relay messages between nodes that are not able to establish a
direct connection with each other.

Multiple proxy processes can be launched independently on the
grid (as long as they are accessible from any point in the grid). The
brokering service balances the load between all the available proxy
services using a simple round-robin heuristic.

3.2. Connectivity

In order to solve the connectivity problems we implemented
several basics techniques (direct connection, port range technique,
relaying) and one advanced method (Traversing TCP [30]) that
allow direct connections through firewalls without being a threat
to the security of the network.

3.2.1. Direct connection

The brokering service stores all local configurations and all
nodes access point. When the Open MPI process on node A is
willing to communicate with the Open MPI process on node B,
it invokes the brokering service through connection-helper and
frontal services. As result of this new connection request, if the
node A is able to contact directly node B, the brokering service
returns node B’s contact point to node A, allowing node A to open
a direct connection to node B.

3.2.2. Port range technique

In case an open port range for incoming connections is available
on the firewall of the grid site, the run-time environment ensures
that all sockets used for incoming connections in this site are bound
to a port in this range. The Open MPI process is informed about
the known port range through Modular Component Architecture
(MCA) parameters.

3.2.3. Relaying

The most reliable connectivity method implemented in QCG-
OMPI is relaying. This technique is designed for the nodes that
reside in different administrative domains, and that are such that
their respective Firewall/NATs prevent either node from directly
initiating a connection to the other. Relaying always works as long

as both cluster nodes can connect to the proxy server. Instead of
attempting a direct connection, the two nodes can simply use the
proxy server to relay messages between them.

3.2.4. Traversing TCP

Traversing TCP [30] is derived from the TCP protocol and
it works with firewalls that are not running stateful packet
inspection. It essentially consists in transporting, using the broker,
the initiating TCP packet (SYN) blocked by the firewalls or NAT on
the server side and injecting the packet in the server’s IP stack.

During the connection establishment the client application’s
SYN packet is intercepted by the connection-helper and forwarded
to the connection-helper on the server side. Once the packet
received, the server connection-helper injects the SYN packet to the
IP stack. The server application replies, to this SYN packet, with a
SYN/ACK packet. The initialization of the TCP connection ends with
an ACK packet from the client to the server: the TCP connection is
established.

Once the connection is established, the communication can
continue between the two processes following classical TCP
operations. The communication between the two processes is
direct, bypassing the broker and ensuring high point-to-point
communication performance.

3.3. Collective operations

The basic idea for optimizing communication patterns on the
grid consists in communication topologies designed such in a
way that they aim at reducing high latency communications, as
presented for a broadcast operation in [24]. In other words, inter-
cluster communications must be avoided on clusters of clusters,
and inter-machine communications must be avoided on clusters
of multicores.

A naive, cluster-optimized collective communication algorithm
like binomial tree used on a grid will send O(log, C) inter-
cluster messages and O(log, %) intra-cluster messages, if P denotes
the total number of processes and C denotes the number of
clusters. The goal is to schedule communications in order to
send a minimal number of inter-cluster messages, i.e., 0(1). For
example, a broadcast operation needs to send only one inter-
cluster message to make it reach a given cluster; then this message
will be broadcast within this cluster using O(log, %) intra-cluster
messages.

The same approach can be generalized and followed to adapt
other communication routines. The algorithms themselves have
been described in [31].

3.4. Programming MPI applications for the grid

Computational grids are intrinsically hierarchical. They are
built by federating more or less remote resources: multicore
machines are aggregated to build clusters interconnected by high
speed, low latency networks. Several clusters can be located in
the same building and be interconnected by Ethernet networks.
Several organizations can interconnect their clusters through the
Internet. As a consequence, applications must be programmed in
a hierarchical way and follow hierarchical communication and
computation patterns.

3.4.1. Topology adaptation mechanism

Programming applications that can adapt themselves to any
underlying physical topology at run-time is a complex task. Com-
putation patterns must adapt themselves to the communication
patterns induced by the physical topology the application is being
executed on and load balancing must be done dynamically.

The QosCosGrid approach considers the problem of matching
the virtual topology of the application and the physical topology
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Fig. 2. Development and life cycle of a QCG-OMPI application.

of the available resources the other way around: instead of
asking the application to adapt itself to any topology, the meta-
scheduler allocates resources with respect to the application’s
virtual topology. Indeed, the complexity of executing applications
that use a given virtual topology on an appropriate set of resources
is pushed to the meta-scheduler. The development chain and life
cycle of an application executed on the QosCosGrid system is
represented in Fig. 2.

Virtual topology. The application’s virtual topology is described in
a companion file called JobProfile, which contains a description
of process groups, hardware resource requirements on the
computing resources used to execute these processes on such as
CPU speed and available memory, as well as requirements on the
interconnection characteristics between and within these process
groups. An excerpt of a JobProfile is shown in Fig. 3. It is strongly
inspired by the network description language presented by Lacour
etal.in [32].

Job submission and scheduling. This companion file is passed to
the grid meta-scheduler when the application is submitted. The
grid meta-scheduler has enough knowledge to allocate resources,
if available, with respect to the virtual topology described in the
JobProfile. It therefore binds a physical topology accordingly.

The scheduling mechanism used by QosCosGrid has been
described in [33]. The resource offer, i.e., the resources available in
the system and their properties (CPU frequency, interconnection
network ...) are described in a Resource Topology Graph (RTG).
The scheduling framework translates the request, expressed in
the JobProfile, into a request RTG. Based on these two inputs, the
scheduler tries to allocate resources in accordance with the user’s
request.

Job deployment and execution. QosCosGrid [34,35] uses QCG-OMPI
as its MPI implementation. QCG-OMPI features the necessary
additions to the MPI language to present the topology chosen by
the QosCosGrid meta-scheduler [36] to the application.

4. Communication performance

This section presents the performance obtained by the QCG-
OMPI communication library. First, we present the platform used
to run these experiments in Section 4.1. Section 4.2 compares the
performance obtained by the connectivity techniques featured by
QCG-OMPI. Section 4.3 presents a set of grid-enabled collective
communication algorithms and the performance obtained on two
typical configurations: a cluster of multicore nodes and a cluster of
clusters.

4.1. Experimental platform

The performance evaluations presented in the section and in the
following one were conducted on two testbeds. The first platform
we used is the QCG cluster, gathering 4 multicore-based nodes
with dual-core Intel Pentium D (2.8 GHz/2 x 1 MB L2 cache) pro-
cessors interconnected by a 100 MB Ethernet network. The second
testbed we used is Grid’5000 [37], a dedicated reconfigurable

<grmsJob appld="ray2mesh-job” >
<resourceTemplates>
<!- Define resources and network requirements —>
<networkResourceTemplate templateld="net-high” >
<networkParameter name="bandwidth” >
<min>5120</min>
< /networkParameter>
< /networkResourceTemplate>
<networkResourceTemplate templateld="net-local” >
<networkParameter name="1atency” >
<max>5</max>
< /networkParameter>
< /networkResourceTemplate>
< /resourceTemplates>

<task taskld="ray2mesh-taskl” >
<resourcesDescription>
<topology>
<group groupld="central_master” >
<processes>
<!- Describe each group in terms of number of
processes and resource requirements —>
< /processes>
<processesConnection>
<!- Define network requirements in groups and
between groups —>
<networkResource>
<templateldReference templateld="net-local” />
< /networkResource>
<groupConnection endpointGroupld="groupl” >
<networkResource>
<templateIldReference templateld="net-high” />
< /networkResource>
< /groupConnection>
< /processesConnection>

< /group>
< /topology >
< /resourcesDescription>

<execution type="open_mpi” >
<!- Give path to the application, provide command-line
arguments, path to input data files and
standard input/outputs —>
< /execution>
< /task>
</grmsJob>

Fig. 3. Excerpt of a JobProfile defining one process group and network resource
requirements (the other groups are not represented in this example). The processes
in the group “central_master” must be interconnected with one another according
to the “net-local” latency requirement, and with the processes of the group “group1”
(not shown here) under the “net-high” bandwidth requirement.

and controllable experimental platform featuring 13 clusters, each
with 58 to 342 PCs, interconnected through Renater (the French
Educational and Research wide area Network). It gathers roughly
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Table 1
Latency comparison for all techniques (in seconds).

Times in MPICH-G2 Open-MPI QCG-OMPI QCG-OMPI QCG-OMPI
seconds direct proxy traversing
Intra-cluster 0.0002 0.0001 0.0001 N/A N/A
Orsay-Rennes 0.0104 0.0103 0.0103 0.0106 0.0103
Orsay-Bordeaux 0.0079 0.0078 0.0078 0.0084 0.0078
Bordeaux-Rennes 0.0081 0.0080 0.0080 0.0287 0.0080
Table 2
Bandwidth comparison for all QCG-OMPI techniques (in Mb/s).
Throughput in Mb/s QCG-OMPI QCG-OMPI QCG-OMPI
direct proxy traversing
Intra-cluster 894.39 N/A N/A
Orsay-Bordeaux 136.08 76.40 138.18

5000 CPU cores featuring four architectures (Itanium, Xeon, G5 and
Opteron) distributed into 13 clusters over 9 cities in France.

For the two families of measurement we conducted (cluster and
grid), we used only homogeneous clusters with AMD Opteron 248
(2 GHz/1 MB L2 cache) bi-processors. This includes 5 of the 13
clusters of Grid’5000: a 93-node cluster at Bordeaux, the 312-node
cluster at Orsay, a 99-node cluster at Rennes, a 56-node cluster
in Sophia-Antipolis and a 60-node cluster in Toulouse. Nodes are
interconnected within each cluster by a Gigabit Ethernet switch.

All the nodes were booted under linux 2.6.18.3 on Grid’5000
and 2.6.22 on the QCG cluster. The tests and benchmarks were
compiled with GCC-4.0.3 (with flag -03). All tests were run in
dedicated mode: nodes were reserved thanks to a reservation
system which ensures that no other user could log on them during
the experiments.

4.2. Point-to-point communications

Basic communication benchmarks using NetPipe® provide a
comparison of the techniques available in QCG-OMPI. In Table 1
we compare the communication latency obtained by QCG-OMPI,
Open MPI and MPICH-G2 using three clusters located in Orsay,
Rennes and Bordeaux. When a relay proxy is used by QCG-OMP],
it is located in the Orsay cluster. Intra-cluster communications
always use direct connection.

As expected, all the communication libraries that establish
a direct connection between two processes have the same
performance. The TCP traversing technique establishes a direct
connection as well and therefore achieves the same performance.

Since QCG-OMPI's proxy technique involves an extra hop
through the proxy between the two communicating processes, the
latency is increased regarding the location of the proxy. When
at least one process is located in the same cluster as the proxy,
this extra hop adds the cost of an intra-cluster communication.
When none of the processes is in the same cluster as the
proxy (e.g., Bordeaux-Rennes) it adds the cost of an inter-cluster
communication and doubles the latency.

Table 2 compares the bandwidth obtained by the different
connectivity techniques provided by QCG-OMPI. When a relay
proxy is used to communicate between two processes, the proxy’s
bandwidth is shared between the two processes. As a consequence,
the available bandwidth is divided by two.

4.3. Collective operations

This section presents a set of grid-enabled collective communi-
cation algorithms and their performance on hierarchical platforms.

6 http://www.scl.ameslab.gov/netpipe.
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Fig. 4. Effects of message pre-cutting on QCG_Gather.

The performance showed here are those of collective operations
based upon the approach described in Section 3.3. Communica-
tions are made within process groups and between process groups
separately, in order to minimize the number of inter-cluster com-
munications by letting only one process of each group take part of
the inter-group communication. For example, for a reduction on a
grid, a local reduction is made within each cluster toward one pro-
cess of this cluster (root of the local operation), and a reduction is
make between the roots of each cluster.

4.3.1. Implementation optimization

Our implementation of these algorithms uses an optimization
inspired by Wormholes [38]: messages can, in some situations,
be pre-cut into small pieces called flits in order to introduce a
pipeline between the levels of hierarchy. Fig. 4 presents the effects
of pre-cutting messages for a gather operation. We can see that
for medium to large messages, best performance is reached when
messages are cut into eight flits. When a flit has reached the
following level of hierarchy, the following flit can be sent, and
so on. The message can span simultaneously over several levels
of hierarchy. This optimization increases the available bandwidth
thanks to the pipeline thus made available. It appeared to be
particularly useful when shared memory communications were
involved, allowing fair system bus sharing.

4.3.2. Performance evaluation

Experimental platform. We conducted two series of experiments,
each one on a platform representing a typical, hierarchical
architecture. These two platforms are described in Section 4.1. We
used the QCG cluster as a cluster of multicores, and Grid’5000
as a grid. Since we conducted both cluster and grid experiments,
we used direct point-to-point connections between processes, in
order to use the same connectivity technique in both series of
experiments.

Experimental setup. The experiments we conducted on the QCG
cluster present measurements in a typical configuration of a
cluster of multicores. We mapped 8 processes on each node to
get 32 processes in total. We deliberately chose to oversubscribe
the nodes in order to stress the network (and more particularly
the system bus) more intensively. Since our micro-benchmarks
are communication-intensive and not computation-intensive, our
experiments have not been biased by the fact that several
processes are sharing the same core. Measurements with a
profiling tool validated the very low CPU usage during out
benchmark runs (close to 100% of the execution time was spend
in MPI routines, according to the profiling tool mpiP?).

7 http://mpip.sourceforge.net.
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Table 3
Communication performances on QCG and Grid5000.

Throughput in Mb/s Latency in ms

(a) QCG

Shared memory 3979.46 0.02
TCP 89.61 0.1
(b) Grid5000

Intra-cluster 894.39 0.1
Orsay-Bordeaux 136.08 7.8

We conducted grid experiments on Grid’5000 using the Orsay
and Bordeaux clusters and mapping 16 processes on each cluster
(1 process per machine). This configuration is an extreme situation
for testing our communication algorithms since it requires a
minimum number of inter-cluster communications.

We followed the same experimental methodology as described
in [17], using the grid-enabled barrier to synchronize time mea-
surements. Communication performances on QCG and Grid5000
are summarized in Table 3.

Performance. We compare the performance of our grid-enabled col-
lective communication algorithms with the standard algorithms
used in Open MPI in Fig. 5. The first row of plots shows compar-
isons on Grid’5000 and the second one shows comparisons on the
QCG cluster. As expected, the hierarchical MPI_Bcast (Fig. 5(a)) al-
ways performs better than the standard implementation. More-
over, pre-cutting and pipelining permits to avoid the performance
step around the eager/rendez-vous mode transition.

When messages are large with respect to the communicator
size, MPI_Reduce (Fig. 5(b)) is implemented in Open MPI
using a pipeline mechanism. Indeed, this mechanism allows
communication costs to be dominated by the high throughput
of the pipeline rather than the latency of a multi-steps tree-
like structure. Since hierarchy shortens the pipeline, its latency
(ie., the time to load the pipeline) is smaller. Short messages
are thus processed more efficiently. On the other hand, for large
messages (beyond 100 kB), the higher throughput of a longer
pipeline outperforms the latency-reduction strategy. In this case,
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hierarchical communications are not an appropriate approach, and
a single flat pipeline performs better.

Fig. 5(c) and (d) picture comparisons between standard and
hierarchical MPI_Reduce and MPI_Gather on the QCG cluster. On
a cluster of multicores, collective operations over shared mem-
ory outperform inter-machine TCP communications significantly
enough to have a negligible cost. Therefore, on a configuration in-
cluding a smaller number of physical nodes, inducing more shared
memory communications, our hierarchical MPI_Reduce performs
better (Fig. 5(c)).

5. Applications

The global approach of QosCosGrid and QCG-OMPI makes
possible the resolution of complex, non-trivial problems on a
computing grid. In this section we present two typical applications
adapted for computational grids. In Section 5.1 we present a
geophysics application using collective communications and a
master-worker computation scheme. In Section 5.2 we present a
linear algebra application that computes an operation numerous
applications are based on. More details on these applications can
be found in [10,9].

5.1. Master—worker application

The master-worker communication and computation scheme
is widely used for massively parallel applications, when the input
data can be cut into sub-tasks (called “chunks”) that can be
computed independently from one another. It features numerous
interesting properties, such as automatic load balancing. However
it suffers some drawbacks when it comes to large-scale. The major
one is the fact that the data is distributed from and the results are
gathered by a single process (the master), creating a bottleneck.

5.1.1. Articulation with QCG-OMPI

As described in Section 3.4, we propose to follow a hierarchical
approach in our data distribution and result gathering algorithm.
The basics are still the same as with traditional master-worker:
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]
T

Taille des messages (octets)
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Fig. 5. Comparison between standard and grid-enabled collective operations on a grid.
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Vanilla Ray2mesh:
Broadcasts
if I_am_master:
while( data )
distribute among workers
receive results from workers
else /* worker */
upon receive data:
calculate ray tracing
send results to the master

Broadcasts

while( data )

else
if I_am_a_boss:

Hierarchical Ray2mesh:
if I_am_central_master:
distribute among bosses

receive results from bosses

upon receive data:
while( data )

endif distribute among workers
Broadcast receive results from workers
AllToAll send results to the central
Output local result master
or my upper-level
boss

else /* worker */
upon receive data:
calculate ray tracing
send results to the boss
endif
endif
Broadcast
AllToAll
Output local result

Fig. 6. Ray2mesh, vanilla and hierarchical algorithms.
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Fig. 7. Comparison of vanilla Ray2mesh with vanilla Ray2mesh using optimized collective communications, and fully topology-aware Ray2mesh.

data is kept in queues, chunks are distributed and results are
gathered.

In order to follow a hierarchical approach, we introduced a new
kind of process called “bosses”. Each process group has one boss;
an upper-level boss is chosen among bosses within a given level of
hierarchy. The top-level boss is the central master.

As seen by their workers or lower-level bosses, bosses act like
masters: they send chunks of data and collect results. When the
computation of a set of data is done they send the results to their
upper-level boss to request for another big chunk of data.

Ray2mesh [39] is a geophysics application that calculates
seismic rays along a given mesh containing a geographic area
description, using the Snell-Descartes law in spherical geometry
to propagate a wave front from a source (earthquake epicenter) to
areceiver (seismograph).

It is made of 3 phases: two collective communication phases
and a master-worker computation phase in between them. When
the number of processes increases, one can expect the second
phase to be faster but the first and third phases to take more time,
since more nodes are involved in the collective communications.
Furthermore, the master-worker computation can suffer from a
central point of contention at large-scale.

We implemented a grid-enabled version of Ray2mesh using
hierarchical collective operations as described in Section 4.3 and
the hierarchical master-worker algorithm described above and
in Fig. 6. Each process group corresponds to a communicator:
lower-level processes (i.e., workers and their local boss) in a
given process group share a communicator. A process group is
executed on a single cluster. A head process is determined in this

communicator and is referred to as the local boss. Local bosses
share a communicator and a head process is determined among
them, and so on until the super-master (top-level boss) is reached.
These communicators are also used by collective operations to
adapt themselves to the topology.

5.1.2. Performance

We evaluated the performance of Ray2mesh and our hierarchi-
cal implementation on Grid’5000 using three clusters: Orsay, Bor-
deaux and Rennes.

Fig. 7(a) presents the scalability of Ray2mesh under three
configurations: standard (vanilla), using grid-adapted collective
operations, and using a hierarchical master-worker pattern and
grid-adapted collective operations. Those three configurations
represent the three levels of adaptation of applications to the
grid. The standard deviation is lower than 1% for each point.
The fourth line represents the values of the last configuration,
measured with the same number of computing elements as in the
first configuration, thus removing the local boss in the process
count.

First of all, Ray2mesh scales remarkably well, even when some
processes are located on a remote cluster. When a large number
of nodes are involved in the computation, collective operations
represent an important part of the overall execution time. We can
see the improvement obtained from grid-enabled collectives on
the “grid-optimized collectives” line in Fig. 7(a). The performance
gain for 180 processes is 9.5%.

Small-scale measurements show that the grid-enabled version
of Ray2mesh does not perform as well as the standard version.
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The reason is that several processes are used to distribute the data
(the bosses) instead of only one. For example, with 16 processes
distributed on three clusters, 15 processes will actually work for
the computation in a single-master master-worker application,
whereas only 12 of them will contribute to the computation on
a multi-level (two-level) master-worker application. A dynamic
adaptation of the topology according to the number of involved
node would select the “non hierarchical” version for small
numbers of nodes and would select the hierarchical version when
the number of nodes exceeds 30.

However, we ran processes on each of the available processors,
regardless of their role in the system. Bosses are mainly used
for communications, whereas workers do not communicate a lot
(during the master-worker phase, they communicate with their
boss only). Therefore, a worker process can be run on the same
slot as a boss without competing for the same resources. For a
given number of workers, as represented by the “workers and
master only” line in Fig. 7(a), the three implementations show the
same performance for a small number of processes, and the grid-
enabled implementations are more scalable. The performance gain
for 180 processes is 35% by adding only 3 dedicated nodes working
exclusively as bosses.

The relative acceleration with respect to the vanilla implemen-
tation is represented in Fig. 7(b). We can see that the application
speed is never harmed by optimized collective operations and per-
forms better on large-scale, and a topology-aware application is
necessary to get a better speedup for large-scale application.

5.2. Linear algebra

We now show how QCG-OMPI can enable the articulation of a
dense linear application with the topology of the grid in order to
confine intensive communications within clusters and limit inter-
cluster exchanges. A more detailed study, from which this section
was extracted, can be found in [9].

5.2.1. QR factorization of tall and skinny matrices

The QR factorization of a general m x n real matrix A is the
decomposition of that matrix into the product A = QRofanm x m
real orthogonal matrix Q and an m x n real upper triangular matrix
R. If A is non-singular and if the diagonal elements are positive,
then this decomposition is unique. There are several algorithms
to perform a QR factorization. We focus on the computation of
this product using Householder reflections (reflections about a
plane) because of their backward stability. This algorithm consists
of the successive application of such Householder reflections of the
form H =1 — zvv" where v is a column reflector, 7 is a scaling
factor and I is the identity matrix [40]. To benefit from an efficient
cache usage, state-of-the-art implementations perform a blocked
factorization [41]. ScaLAPACK [42], accumulates b elementary
Householder reflectors within a panel (a block-column) V. The
subsequent applications of these b reflectors (H1H- ... H,) is then
applied all at once using the matrix equality HH, . . . H, = I—-VTVT
(T is a b x b upper triangular matrix). However, within a panel,
columns are factorized successively inducing a reduction after each
column factorization. If P processors are used, at least blog,(P)
messages are required to perform the panel factorization.

We consider a variant of this algorithm, so-called “Communi-
cation-Avoiding QR” (CAQR) [43]. As in ScaLAPACK, the basic
operation of CAQR is the factorization of a panel followed by the
update of the trailing submatrix. Since the latter is dictated by the
former, we focus on the panel factorization step called “Tall and
Skinny QR” (TSQR). TSQR splits the initial m x b matrix into block-
rows so-called domains. The domains are factorized independently
from one another. A single reduction is thus required, inducing
only log, (P) messages during the whole panel factorization if there

is a perfect matching between processors and domains. Fig. 8
illustrates the TSQR algorithm.

TSQR is particularly well adapted to the factorization of tall
and skinny matrices, i.e., matrices satisfying M > N (see [43]).
TSQR is an important kernel for two reasons. First, the QR
factorization of tall and skinny matrices is directly used in several
important applications of dense linear algebra such as block
iterative methods, each time they need to compute an orthogonal
basis of a set of vectors. Second, TSQR is the panel factorization of
CAQR, which allows to process general matrices.

5.2.2. Implementation of TSQR with QCG-OMPI

We implemented the TSQR algorithm on top of ScaLAPACK.
The local QR factorization occurring in a domain consists of a
call to PDGEQRF ScalLAPACK’s parallel routine. Such a call uses
a subgroup of processes. We articulate TSQR with QCG-OMPI as
follows. Because ScaLAPACK induces more messages than TSQR,
we use the JobProfile to request a low latency among processes
of a same subgroup and we accept a lower network connectivity
between subgroups. This formulation actually corresponds to the
classical clusters of clusters approach. To facilitate load balancing,
we furthermore request a similar computing power between the
groups. The meta-scheduler will allocate resources in the physical
grid that match these requirements and expose them to the
application through two-dimensional arrays of group identifiers.
The application then creates one MPI communicator per group,
using the MPI_Comm_split routine. TSQR can thus benefit from
the topology of the grid: local factorizations are performed within
clusters using ScaLAPACK whereas a single reduction occurs
between clusters. The number of messages exchanged on the grid
is thus limited. This is critical since inter-cluster latencies are
two orders of magnitude greater than intra-cluster latencies (see
Tables 1 and 2). And this ratio can even reach three or four orders
of magnitudes on a grid built on top of Internet.

5.2.3. Experimental results

We conducted an experimental study using four clusters
located in Bordeaux, Orsay, Sophia-Antipolis and Toulouse. In all
the experiments reported in this study, we run one process per
processor (thus two processes per node) using the serial GotoBLAS
BLAS library.

Fig. 9(a) shows the performance of ScaLAPACK’s QR factoriza-
tion of matrices of width N = 64. Except for very tall matrices
(M > 10,000,000), we observe a slow down of ScaLAPACK when
using multiple sites. For very tall matrices, the amount of compu-
tation becomes so high that communications (which do not de-
pend on the number of rows) become less critical; a slight speed
up is eventually observed (right-most part of the graphs). How-
ever, even for the largest matrix considered in this study (M =
33,554,432, corresponding to 16 GB of data), a speed up of 2 is
hardly reached while using four clusters.

The performance of TSQR articulated with QCG-OMPI depends
on the number of domains used. The requirements asked through
the JobProfile constraint to get at least one domain per cluster. But
this is only a lower bound; it is possible to require more domains
per cluster. In Fig. 9(b), we report the TSQR performance for the
optimum number of domains per cluster. Contrary to ScaLAPACK,
TSQR achieves a speed up on a significant range of matrix sizes.
Indeed, for matrices of moderate to great height (M > 500,000),
the fastest execution is the one conducted on all four sites.
Furthermore, for very tall matrices (right-most part or the graphs),
the speed up is optimum (almost 4 on all four clusters). In other
words, QCG-TSQR enables a scalable and efficient QR factorization
of large-scale tall and skinny matrices. Such factorization are
repeatedly used in block iterative solvers for example. Finally,
Fig. 9(c) shows that TSQR is significantly faster than ScaLAPACK.
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Fig. 8. TSQR algorithm. The initial tall and skinny matrix is split into four domains factorized independently from one another (left). The upper triangular matrices (R;) are
then assembled by pairs and factorized following a binary tree reduction (middle) until the final triangular factor Ry is obtained (right).
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6. Conclusion

In this paper, we have presented QCG-OMPI, an MPI commu-
nication and run-time environment designed specifically for grids.
Based on Open MPI [12], it makes use of a grid-level extension of its
run-time environment to address connectivity issues between ad-
ministrative domains. Basic and advanced connectivity techniques
are provided, and their performance has been evaluated and com-
pared with other grid-enabled middleware.

Being able to communicate efficiently throughout the grid is
not sufficient to ensure good performance of parallel applications,
regarding the orders of magnitude between communication costs.
As a matter of fact, applications must follow adapted, hierarchical
communication patterns that match the physical topology of the
resources they are executed on.

In the second part of this paper we have presented a set of
collective applications adapted to the grid following a hierarchical
approachin order to limit high latency communications. Moreover,
the hierarchization of the patterns followed by these algorithms
allows the usage of local, highly optimized algorithms.

In the last part of this paper we have explained a method to
obtain good performance with parallel application on the grid
making use of a contribution from the grid meta-scheduler. The
communication patterns of the application are described as its
virtual topology and submitted to the grid meta-scheduler. As a
consequence, the complexity of the adaptation between allocated
resources and the application is pushed to the scheduler. An
extension of the MPI standard gives the possibility to retrieve this
topology at run-time.

We have shown that this approach can be easily followed to
design efficient applications with two typical, parallel applications.
The first one is using a set of collective communications and a
master-worker-based computation core. This pattern is widely
used for parallel applications and we have shown that it can reach
a significantly higher scalability following hierarchical patterns.
The second application is a numerical linear algebra kernel that
computes a matrix factorization. That latter study showed that
QCG-OMPI enabled a scalable factorization of large-scale tall and
skinny matrices.

Future works Directions for future works include improving the
resiliency and availability of the grid infrastructure, for example
using a highly distributed infrastructure (distributed broker) [44].
Besides, the positive results on parallel applications are strongly
encouraging further research on grid-enabled applications.
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